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A theoretical calculation of the charge radius of He3 

was made recently by Pappademos14 which is in 
reasonable agreement with the experimental rms values 
found in our studies. Some theoretical work on the 
electrodisintegration of He3 has been carried out by 
Haybron15 and this will be compared subsequently 
with the experimental inelastic continua now being 
studied at Stanford. 

14 J. M. Pappademos, Nucl. Phys. (to be published). 
15 R. M. Haybron (private communication). 

I. INTRODUCTION 

NEW methods of obtaining approximate solutions 
to the vector wave equation, based on variational 

techniques, are presented. The development of varia
tional principles for electromagnetic scattering is, of 
course, not new, but most of the earlier methods have 
applied only to surface scattering1-5; i.e., the scatterers 
have been assumed to be perfect conductors. In spite 
of the considerable interest in scattering by dielectric 
obstacles, there exist relatively few variational prin
ciples applicable directly to the vector-potential-scatter
ing problem. Those that do apply, notably the station-

* The research reported in this paper was sponsored by the 
Air Force Ballistic Systems Division, Air Force Systems Com
mand, under Contract No. AF 04(694)-l with Space Technology 
Laboratories, Inc. 

1 The literature on the theory and applications of the variational 
method to problems of electromagnetic surface scattering is 
quite extensive, and no attempt will be made to provide an 
exhaustive list of references. Numerous additional references may 
be found in those cited in this article. 

2 H. Levine and J. Schwinger, Comm. Pure Appl. Math. 3, 355 
(1950). 

3 R. Kieburtz, A. Ishimaru, and G. Held, University of Washing
ton, Department of Electrical Engineering, Tech. Rept. No. 45, 
1960 (unpublished). 

4 R. F. Harrington, Time-Harmonic Electromagnetic Fields 
(McGraw-Hill Book Company, Inc., New York, 1961), Chap. 7. 

5 J. R. Mentzer, Scattering and Diffraction of Radio Waves 
(Pergamon Press, Inc., New York, 1955). 
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ary forms based on the "reaction concept" of Rumsey,6 '7 

may be useful in the calculation of cross sections but 
provide little information on the fields themselves at 
an arbitrary space point. 

The objective of this paper is to present variational 
principles for the vector-scattering problem which are 
formal analogs of principles which have been found to 
be particularly useful in the scalar-scattering theory. 
In Sec. II , variational principles based on both the 
differential and integral equations for a generalized 
tensor Green's function are discussed, and in Sec. I l l 
variational principles for the field and dyadic-scattering 
amplitude are developed. The special case of a spher
ically symmetric scatterer is considered in Sec. IV, 
with the analysis leading to amplitude-independent 
variational principles for the two independent phase 
shifts required in the vector-scattering problem. An 
application of the formalism to the scattering of a 
plane wave by a complex axially symmetric potential 
is given in Sec. V. 

As a slight notational simplification, the following 
convention is adopted throughout the paper. Unless 
otherwise specifically indicated, the product of a dyadic 

6 V. H. Rumsey, Phys. Rev. 94, 1483 (1954). 
7 M. H. Cohen, IRE Trans. Antennas Propagation AP-9, 193 

(1955). 
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Variational methods are considered for the solution of the vector wave equation describing the field due to 
an arbitrary source placed in the neighborhood of an inhomogeneous absorbing medium. Variational principles 
for the tensor Green's function satisfying the point source equation, VX VX T (r,r')—&2r(r,r') + U(r) r ( r , r / ) 
= — 15 (r—r'), have been obtained in linear and exponential forms, analogous to the Altshuler principles for 
the scalar wave function. Stationary forms for the wave function and the scattering amplitude in the 
standard scattering problem (incident plane wave, outgoing solutions) are recovered when the point source 
recedes to infinity. For the special case of a spherically symmetric scatterer, the analysis leads to variational 
principles for the two independent /th-order phase shifts. The method is illustrated by a calculation of the 
fields internal to an axially symmetric potential. 
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with a vector or another dyadic is understood to be the 
scalar product, and the dot customarily symbolizing 
scalar multiplication is dropped. 

II. POINT-SOURCE VARIATIONAL PRINCIPLE 

The differential equation which relates the electric 
field at any point of space to its sources is, for harmonic 
time dependence 

V X V X E - £ 2 E + * 7 ( r ) E = - j ( r ) , (1) 

where k2=oo2/c2, and where the scattering potential 
U{r) is defined in terms of the dielectric constant of a 
bounded medium by Z7(r) = &2[l — e(r)] ; j(r) is propor
tional to the current density distribution. The solution 
of Eq. (1), subject to the outgoing-wave boundary 
condition, may be related to a tensor Green's function 
r ( r , r ' ) by 

E ( r ) = /V(r,r')j(r')<*r', (2) 

where r ( r , r ' ) is the dyadic field at the position r due to 
a unit dyadic point source at r = r / , and satisfies the 
equation 

vxvxr^O-^r^O+^WrCr/) 
= - l 3 ( r - r ' ) . (3) 

The field r ( r , r r ) may also be represented by the 
integral equation 

r ( r , r ' ) = G ( r , r ' ) + / G(rit")r(t",T')U(t")dx", (4) 

where G(r ,r ' ) is the usual free-space dyadic Green's 
function—i.e., the solution of (3) with U{x) set equal 
to zero. I t is shown in Appendix I that r ( r , r ' ) satisfies 
the symmetry condition 

r ( r , r ' ) = r r ( r ' , r ) , (5) 

where TT is the transpose of r . 
I t is apparent from Eq. (2) that a stationary expres

sion for r ( r , r ' ) provides a field E(r) having the property 
of stationarity; it is, therefore, sufficient to consider 
only variational principles for the Green's function 
r ( r , r ' ) . The following expression defines a variational 
principle for the point-source problem8: 

Si(r ,p) = 2 r ( r , p ) + / Y ( r , r ' ) [ V ' X V ' X - - £ 2 

+ tf(rO]r(r',p)tfr'. (6) 

Note that S i has the property that it reduces to r ( r , p ) 
for a choice of trial function equal to the exact r ( r ,p ) . 
The stationarity property may be established as 

*The operator, [VXVX — &2-f-Z7(r)] has been improperly 
written as a mixed vector-scalar quantity. Strictly speaking, this 
operator should be written in the somewhat lengthier dyadic form 
[VV-IV 2 -£ 2 I + tf(r)l]-. 

follows: Consider an arbitrary variation bT from the 
true solution, so that, to first order in 5 r , 

$S1(r,p) = 2Sr ( r , p )+ f $ r ( r , r O [ V ' X V ' X - £ 2 

+ J 7 ( r ' ) ] r ( r ' , p ) d r / + / ' r ( r , r O 

lv'xv'x-£2+tf(rO]$r(r',p)</r' 

= 5 r ( r , p ) + / V ( r , r ' ) [ V ' X V ' X - £ 2 

+ tf(rO]«r(r',p)Ar'. 

But from the transpose of Eq. (3), 

C^-^7( r / ) ]^ ( r , r , ) = C V / X V , X ^ ( r » ] ^ + I 5 ( r - r , ) 

= [ V ' X V ' X r r ( r , r ' ) ] r + B ( r - i ' ) , 

where the superscript T denotes the transpose, so that 

«Si( r ,p)= M r ( r , r ' ) V ' X V ' X $ r ( r ' , p ) 

-Cvxvxr^^rOl^r^p)}^. 
Use of the identity9 

{ A - V X V X B - [ V X V X A r ] r - B } ^ 

= di[mAudjBjk—AijdiBjk+ (diAij)Bjk— (djA^Bik], 

i,j,k,l=l,2,3. (7) 

reduces the i, k component of the variation to a surface 
integral 

&Si(r,p)iA 

= / ^ / [ r t 7 ( r , r 0 ^ r i , ( r , , p ) - r , y ( r , r O a ^ r y , ( r , , p ) 

+a z r , y ( r , r05 r y , ( r ' , p ) - aA7( r , r05 r„ ( r ' , p ) ] , 

for which the surface of integration shall be chosen to 
be a sphere of large radius r'. All derivatives appearing 
in the integrand are to be taken with respect to the r' 
coordinates; i.e., dj=d/dx/. 

In order to evaluate the surface integral, the asympto
tic forms of r ( r ' , p ) , r ( r , r ' ) are needed. These are 
most conveniently obtained by using the explicit form 
of the free-space Green's function2 

G ( r , r ' ) = ( I - £ - W ) £ ( r , r ' ) , (8) 

where I is the unit dyadic and g(r,r') is the free-space 
scalar Green's function g^ | r_r / |/(—47r) | r—r' | . Inserting 
(8) into the integral equation for r ( r , r ; ) and taking the 
limit a s / -> oo, we find 

pihr' 

r ( r , r ' ) • 
-Awr' 

A ( - k ' | r ) , 

9 The convention of an implied summation on repeated indices 
is used throughout. 



E L E C T R O M A G N E T I C POTENTIAL S C A T T E R I N G 425 

where k'=f, and representation 

A ( - k ' | r ) ^ - ^ * I k , + (r(t9r>')\vU(f<)<r*'-*"dT>' (9) e xp{D} = I + E D«/»I. 
J i 

is the solution to the standard scattering problem, 
representing a plane wave incident in the direction , Both S i and S 2 are based on the differential operator 
- k ' , scattered by the potential U and observed at the ( V X V X - F + t / ) and the trial function must, therefore, 
position r. The symbol Ik, represents the modified unit b e meaningful throughout all space. However, if, in 
dyadic \ — kfk' Similarly *he variational expressions, the point-source wave 

function r ( r , r ' ) is replaced by its integral equation, 
eikr two stationary expressions are obtained in which the 

r ( r , p ) > AT(—k| p). differential operator no longer appears. These alterna-
~^wr tive forms of S i and S2, based on the integral equation, 

Use of these asymptotic forms and the relation are formally more complicated but have the advantage 
dS/dt=dS'd/dr' reduces the surface integral, after that a meamngful trial function need be chosen only 
some cancellation, to W l t h l ? t h e bounded potential region Uit) Since the 

new forms of S i and S 2 are easily derived, they are 
dSi(r,p)ik

 n o t given explicitly here. 

/

pikr* t 1— / pikr' v 

Ul7(-k'|r) dl W^(-k'|p) 
— 4irr'l L \ —47rr7 

- 4 * r ' 

III. VARIATIONAL PRINCIPLES IN THE STANDARD 
SCATTERING PROBLEM 

Variational principles for the solution of the standard 

] r* / pifcr' \ JT jr 

_ J W - k ' | r) scattering problem, i.e., the outgoing solution of the 
L \—AwrV wave equation for an incident plane wave, follow readily 

by a limiting procedure from the point-source forms of 
eikr' H 1 ~ 1/1 1 / the last section. 

+ZI^iAi^kf^fA^^P^dSl'' I f w e t a k e t h e transpose of Si(r ,p), interchange r 
and p, and use the reciprocity relation, Eq. (5), we 

From Eq. (9) it is evident that A ( - k ' | r) is transverse o b t a i n S i i n the f o r m 

(in its right-hand indices) to the direction &', i.e., 
A(—k' I r) •£'=(). If the same transversality property is f 
assumed for the trial functions, then, since dS'-dS'k', Si(r ,p) = 2 r ( r , p ) + J [ V ' X V ' X r ( r ' , r ) - * ' r ( r ' , r ) 
each term of the integrand of the surface vanishes and 
the stationarity of Si(r ,p) + ^ ( r O r ( r ' , r ) ] r r ( r ' , p K r ' . (11) 

6Si(r,p)i*=0, i, k=l, 2, 3, 
is proved Interchanging p and r, applying the reciprocity relation 

In addition to the scalar analog of S i , Altshuler1* t 0 t h e transpose of the integral equation 
has proposed an exponential form of variational 
principle for the point-source scalar wave function, a w N —, N , f - » , A W , N r r / A , , /Art. 

• - i i. J J- r 4.- r ( r , p ) = G ( r , p ) + / G( r , r / ) r ( r / , p ) t / ( r / )^ r / , (12) 
principle whose dyadic generalization is v ,Mr/ K , t v / v ' ' K , t v v J ' v J 

S2(r,p) = r ( r , p ) e x p I + r - 1 ( r , p ) / r ( r , r ' ) and allowing the source point p to recede to infinity in 
J thp Hirprtinn —kn WP find thp limitfncr fnrm 

'£VXV'X-k*+U(t>)2r(r',V)dr' , (10) 

the direction — k0, we find the limiting form 

pikrp 

where r _ 1 ( r ,p) is the matrix inverse of the trial function 
T(r,p). The stationarity of S2(r,p), eikr*> 

r ( r , p ) - * ^ r I k o + / Y{r,x')\uU{x')e^'dx' 
QfirT'ft {. J ) 

A(k 0 | r ) , (13) 
5S2(r,p) = 0, -4irr ; 

is most easily proved by recognizing that the exponent - , N . . 
may be written as I - i ( r , p ) S i ( r , p ) - 1 , and using the w h f e A * ° l r ) 1S t h f s o l u

1
t l o n t 0 ^ s t f n d a r d scattering 

relation J ^ - M r r 1 . The dyadic exponential in problem representing the total field at the point r 
Eq. (10) is, of course, defined by its infinite series resulting irom the scattering of an incident plane wave 

having propagation vector k0. If we now take the same 
10 S. Altshuler, Phys. Rev. 109,1830 (1958). limit in Eq. (11) and divide through by the amplitude 
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factor eikrp/(—'lirrp) = N, we obtain 

S i 

N 
-=2A(k0|r)+ / [ vxv 

- / 

Xr(r^T)]*A(k0 |r ')<*r' 

[ £ 2 - t f ( r O ] r ( r , r O A ( k 0 | r ' > / r ' . 

Multiplying the transpose of the differential equation 
(in the primed coordinates) from the right by A(k 0 | r ' ) 
and subtracting the differential equation for A(k 0 | r ' ) , 
multiplied from the left by r ( r , r ' ) , we find, after 
integrating over the r' coordinates, the identity 

f [ V , X V , X r ( r , , r ) ] 7 , A ( k 0 | r O ^ 

= J r ( r , r ' )V 'XV 'XA(k 0 | t'W- A(k0 | r). 

Therefore, we have 

Yx=—=A(ko r)+ 
N 

J r ( r , r ' ) 

• C V , X V , X - ^ + t / ( r O ] A ( k o | r , y r , (14) 

as the variational principle for the dyadic field A(k0 | r). 
Proof of the stationarity of Y i for arbitrary, independ
ent variations of the two wave functions r ( r , r ' ) and 
A(k 0 | r ) is deferred to Appendix II . 

For the case of an incident plane wave with the 
electric polarization vector equal to a constant vector 
£, the relation between the vector field E and the dyadic 
field A is E = Ae. Thus, scalar multiplication from the 
right of Eq. (14) by a polarization vector e yields a 
Afunctional variational principle directly on the 
electric field vector E, stationary with respect to 
arbitrary independent variations of the two trial 
functions from the exact solutions to the standard 
vector scattering problem and the dyadic point-source 
problem. 

The same limiting procedure of allowing the source 
point p to go to infinity in the direction — k0 cannot be 
applied directly to the stationary form S2 since, in 
this limit, the longitudinal component of the field 
vanishes; therefore, limr(r,p)==iVA(ko|r) is a singular 
matrix, and limr~1(r,p) does not exist. Nevertheless, 
there does exist a variational principle of the exponential 
form for A ( k 0 | r ) : 

Y 2 = { e x P r f r ( r , r O [ V , X V / X ~ ^ + ^ ( r O ] 

• A (k0 J rO^r' A- 1 (k0 [ r) 1J A (k01 r). (15) 

For exact trial functions, the exponent reduces to the 
zero matrix, and Y 2 = A ( k 0 | r ) . Since A(k 0 | r ) is sin

gular,11 its inverse, in the ordinary sense, does not exist; 
a clarification of the meaning of the quantity A - 1(ko| r), 
appearing in Eq. (15), is therefore in order. 

If &-, e2 are two independent polarization vectors of 
the incident plane wave and if EJ(r), E2(r) are the total 
electric fields at r due to the scattering of plane waves 
polarized in the directions &, £2, respectively, then we 
know the function A(k 0 | r ) has the properties 

A(k 0 | r )e 1=E 1(r) , 

A(k 0 | r )e 2=E 2(r) , 

A(k 0 | r )£ 0 =0, 

(16) 

where &o is the unit vector in the direction of propaga
tion of the incident plane wave. Since A is a 3-dimen-
sional matrix of rank 2, its inverse does not exist, 
although we can define a rank 2 "inverse." The third of 
Eqs. (16) requires that the left inverse to A satisfy 

A^A^ I ko> (17) 

while the first two equations imply 

A ^ E 1 ^ 1 , A - 1 P = ? . (18) 

These equations are not sufficient to determine A - 1 (ko | r) 
uniquely, however, and another condition on A - 1 is 
required. According to Eq. (18), A _ 1(k 0 | r ) , operating 
on a solution to the plane-wave-scattering problem, 
yields the polarization vector of the incident plane wave. 
The most general solution of the scattering problem 
(corresponding to arbitrary polarization of the incident 
plane wave), at any point r, is a vector lying in the plane 
defined by the two vectors Ex(r) and E2(r). Any vector 
in the direction of Ex(r)XE2(r) cannot result from an 
incident plane wave polarized in any direction; there
fore, A-^koIr) operating on EXXE2 must be zero: 

A- 1 (k 0 | r )?( r ) = 0, (19) 

where e3(r) is a unit vector in the direction of Ex(r) 
XE2(r). Equations (18) and (19) define the matrix 
A - 1 (k01 r) uniquely in terms of E1, E2, &•, e2. The matrix 
elements of A and A"1 may be written out explicitly; 
however, except for the special case in which (e1, £2, &o) 
are the Cartesian basis vectors (I, j , k), the most 
concise representations are the dyadic forms 

A ( k o | r ) = ( E ^ 2 - E 2 ^ ) X ( ^ X ^ 2 ) -
1 

(elX&)2 

A - 1 ( k 0 | r ) = ( ^ E 2 - e 2 E 1 ) X ( E 1 X E 2 ) 
1 

(EXXE2)2 
(20) 

Finally, we note that fe0A"1 = ^8A==0, and A A-1—A""1 A 

As in the case of the variational principles for the 
point-source wave function, the differential operator 

" T h e singularity^of A(k0|r) is implied by the transversality 
condition, A(ko|r)-^0==0. 
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VXVX— k2+U(x) may be eliminated from Yi and Y2 
by replacing the wave function by its integral equation. 
For example, taking the integral equation for A(k0|r) 
in the form 

A(k0 |r) = I k / k ° . r + f G(r,rOtf(r')A(k0|r')rfr', (21) 

and substituting in Yi, we obtain the stationary form 

Yi= Ikoe*»-'+ [G(t,r')U(r')A(k0\ xf)dxf 

+ /V(r,r')lko0<ko-r'- f r(r,rO^(r')A(k0 |rOdr' 

+ J \T{t,tf)U{t,)G{r,
yx

n)U{x,f) 

•A(k0|r")dr'dr". (22) 

If h0e
iko'T is subtracted from Yi in either of the forms 

(14) or (22), there results a variational principle for the 
scattered field; if then the observation point r is^allowed 
to become infinitely large in the direction k, there 
follows a principle for the tensor amplitude F(k0 | k) for 
scattering into the direction given by the unit vector k. 
Thus, from Eq. (14), we have 

amplitude; that is, 

[ F ( k 0 | k ) W — V t A C k o l r O ^ f r O e - ^ ' W - C - 1 

• / ' 

A r ( - k | rOIk0*/(r'yk°-r'rfr', (24) 

where C is the rank 2 matrix 

C ^ (AT{-k\x')A{k,\xf)U{xf)dxf- ! !AT{-k\xf) 

• G(r',r")A(k0 | r")U(r')U(t")dt'dt" 

which reduces to F(k0 |k) for exact trial functions, 
A(k0 |r /), AT(-k\xf). The "inverse," C~\ of the 
matrix C is defined in a manner analogous to the 
definition of A-1. If $ represents the integral operator 

3M \dxfAT{-k\x')U{x') 

dxfdxf,AT(-k\xf)G{x\xN)U{x,)U{xN)> -II-
,ikr 

-[F(k0 |k)]= lim (Yi- I k / k ° - r ) 

=—F(k 0 | k ) -
pikr r 

— I 
—4irr J 

A r ( -k | r ' ) 

and Ex(r) and E2(r) are the trial electric fields assoc
iated with the trial wave function A(k0lr), then the 
following properties obtain 

(25) 

•[V'XV'X-fc2+*/(r')]A(k0 | r')rfr', 

or 
and 

[F(k0 |k)]=F(k0 |k)-
4?r 

/ A ^ ( - k | r O 

•[V'XV'X-JH-tf(rO]A(k0 |r')rfr'. (23) 

This is the dyadic analog of the Kohn12 bifunctional 
variational principle for the scalar scattering amplitude. 
As may be readily established from the two equivalent 
forms of the integral equation for A(k0 |r), Eqs. (9) 
and (21), the scattering amplitude satisfies the trans-
versality conditions F(k01 k)k0= kF(k01 k) = 0, and the 
reciprocity relation F (k01 k) = ¥T (—k | — k0). 

Finally, there also exists an amplitude-independent 
variational principle for the dyadic scattering amplitude 
which is the formal generalization of Schwinger's well-
known variational principle for the scalar transition 

c-

C9--

C&--

C£o: 

c-
c-

=m\ 
= SE2, 

= 0, 

1(SE1)= 
1(SEa) = 

-1(SE1XSE2)= 

-t\ 

= *, 

=0. 

12 W. Kohn, Phys. Rev. 74, 1763 (1948). 

(26) 

Furthermore, kC=k0C-1=0, C 1 C = Iko, C C " ^ I - M , 
and, since ^E 1 ==^SE 2=0, it follows that the vector 
SEXXSE2 is parallel to db.fe. The elements of the matrix 
C~x may be determined algebraically from Eqs. (26); 
alternatively, the dyadic representation of Eq. (20) 
may be used, with E1 and E2 replaced by ^E 1 and 
$E2, respectively. 

IV. SPHERICALLY SYMMETRIC SCATTERER 

It is of interest to consider the special case of a 
spherically symmetric potential, U(x)—U(r)r for in 
this case, the expansion of the field into vector spherical 
waves leads to a relatively simple representation of the 
solution in terms of one-dimensional integral equations 
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for the radial parts of the component spherical waves, harmonics, Yjm(d,(p), by the equations 
Comparison of the asymptotic form of the total field v m__r ,( . 1\-i_l/2¥ v m 

with that of the unperturbed field leads to the intro- X ; / - U U T 1 ) J ^ * J > 
duction of phase shifts, of which two are required for Yyj_iw=Q'(2y+l)]-1/2£—jr-\-ifXl>~]Yjm, 
each spherical wave component of the total field, in y . •+ 1

w=r(y+l)(2y+l)] - 1 / 2 r ( i+l) r+trXL]F-w 

contrast to the single phase shift necessary in the scalar 
problem. Variational principles will be given for the where Lis the operator — ir XV, and y, ware integers. 
cotangent of each of the two phase shifts. T n e vector harmonics are normalized by the condition 

It is convenient to expand the field into vector r 
spherical harmonics, Yjim(6,<p), although for the spin- / Yjim*(d,<p)- Yj>i>m'(d,<p)dto=8wt>u>8mm>. 
one electromagnetic field only the three functions ^ 
Y;,;w, Yy,/-!1*, and Yj,j+im are required. These functions In terms of the Yj7

m, the dyadic Green's function, Eq. 
are related to the more familiar scalar complex spherical (8), may be shown to have the expansion 

G(r,r')= -ik £ j&r'Mkr)Y^{9,<p)Y^*(e\<p')+ik £ \(-?—) h^(kr) Y ^ ^ M 
Jim jm \_\2j-\-l/ 

/ i + l \1/2 TV J \1/2 / i + l \ 1 / 2 i 
+ \ r ~ T / *̂ +1(*r>YyjLHX-Ĉ ,̂ JL\2̂ —1/ i i - l ( ^ ) Y ^ l M ( ^ ^ ) + ( 2 T - - ) im(^Y iy+1-(0>')J (27) 

for r>r'\ for r<r', G(r,r') is found from Eq. (27) by If we write for the total electric field 
interchanging primed and unprimed coordinates and 
transposing. The range of summation on j is from 1 to E(r) = ]T) ^/zmMYyjm(#,<p) (29) 
oo? on I from j—1 to j + 1 , and on m from — j to + j . ilnt 

The functions ji(kr) and hi(kr) are spherical Bessel 
functions of order / and spherical Hankel functions of and substitute Eqs. (27)-(29) into the integral equation 
the second kind of order I, respectively. An incident for E(r) 
plane wave, propagating in the z direction and polarized 
in the x direction, has the expansion E(r) = E0(r)+ f U(rf)G(r,r')V(rr)rf2dr'dttf

y 

J£o=Aeikzx J 

= ^2 —A (27r)1/2(21+ l)ljHlji(kr) we obtain an expression in which the angular integration 
1,3 _ over dQf can be carried out. A further application of the 

XtCoi^Y^-Co-i1 '*,-* x), (28) o r t n o n o r m a l i t y property of the Yjt
m then yields the 

where the C0±ul3' are 5-index Clebsch-Gordan coeffi- following three purely radial integral equations for the 
cients, and A is the amplitude of the incident wave. unknown functions Wjjm(r), w#_iw(r), and Wtf+im(r): 

^ i m W = [ ^ ( 2 i + l ) ] W i i ( ^ ) ( 5 m , 1 + 5 w , _ 1 ) ^ - i % ( ^ ) ( rf*U(ryJ(kr')wjj'*(r')dr' 
Jo 

-ikjj(kr)f r'*U(r')hj(kr')wjJ
m(r')dr', (30) 

0*+l)1/2 fr 

2j+l Jo 
( y + 1 ) i / 2 -co 

-U)1/2jj+mj+imldr'-ik j^(kr) / f /^[(i+l)1/aA /-iwy^1--(i)^AmTe; im~3rff', (31) 
2jH-l Jr 

2j+l Jo 

ik(j)1'2 r 
- U+ WKji-iWH-irW jm(kr) / r'*U£Ur%-+1w3W™- (j+ iyi%^wj3^2drf. (32) 

2 7+1 Jr 
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It is readily shown from these equations that nontrivial solutions are possible only for m= ± 1 ; furthermore, it is 
clear that 

Since the potential is assumed to be bounded, U(r) = 0 for all r greater than some distance <z; thus, for r>a, the 
last term in each of the radial equations is zero. In terms of conveniently redefined radial functions (which are 
independent of whether m= ±1) 

Wjjm(r)kr Wjj-.!m(r)kr Wjj+im(r)hr 
^00 = > ty-i(0= • > ^+iW = , (33) 

the system of coupled radial integral equations simplifies, for large r, to 

»yW= (2j+iyikrjj(kr)A-ikrhj(kr) f U(r')ji(kr%(r/)r'dr', 
Jo 

vj-xtf-U+iyi'krjt-xWA-ikrh^iQr) / l{j+\yi*j^v^+{jyi*jj+1vj+{]Ur>dr>, (34) 
2/+1 Jo 

( i ) l / 2 fr 

2j+lJa 

Letting r —> <», we obtain the asymptotic form of the radial functions 

Vj(r)= (2j+l)lliA cosUr- -0 - +l) l -e* r - i ( ' r / 2 ) «+ 1 ) f iU(r')Mkr')vj(r')r'dr', 

L 2 J J0 2/+1 

r ir -] rKiU(r') 
Vj+i(r)=- (j)wA cos kr—j + « « ^ w » y / {UU+^mJi-ih--i+jJi+^+iydr'. 

L 2 J J0 2»+l 

(35) 

Note that asymptotically there are only two independent radial functions, since, according to Eq. (35), v^i 
==— Ci/(i+l)]1/2^y-i- The spherical wave components of the incident plus scattered waves may be interpreted 
asymptotically as the components of a phase-shifted incident wave. Thus, defining the /th-order phase shifts 
ah fa by 

vj-i-BjU+iy* c o s | > - (T/2)j-a& Vj-C&j+iyi* c o s [ > - (V2)C/+ l ) - fo l (36) 

we find B3 = Ae~ia^ Cj=AeriP>, and 

1 f* T / i + l \ 1 / 2 / j \1/2 1 
tanay=— / rU(r)\[ ) jj-i(kr)<Ps-i(r) + [ i m W ^ i W F , (3?) 

4 Jo L \ 2 y + 1 / \2j+lJ J 

1 /•* 
tanft-= — / rU^jjik^cpj^dr, 

A Jo 
where 

eifi'Vj(r) eiaivj±1(r) 
<Pj (?) = , *V±i W = " 

(2y+1)1/2 c o s /3y (2j+l)1 / 2 cosay 

If the integral equation for ^-(r), expressed in terms of the functions cpj(r), is multiplied by kU(r)<p,(r) and inte
grated on r from 0 to <*>, it is found, after some manipulation, that 

cotfr= + * ( [u<r)ln(r)ydr+ Idr j'dr'<Pj(r)U(r)gj(r,r')U(r')<Pj(r')) Aj'krU(r)jj(kr)Vj(r)dr^ , (38) 
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where in addition, we shall define the vectors 

gi{rS)=-krr>j4{kr)ni(kf>), r<r> J ( r ) = = ^ / ( i + D 1 / 2 i i - i ( ^ ) \ 

—VrMkrOnAkr), r>r> ( 2 j + l M ( i ) v V m ( * r ) J 

kr / ( i + l ) 1 / 2 * ^ i ( * r ) \ 

and fij(r) is the spherical Neumann function of order j . T^jTru/^ l (tyi%. (kr) I 
This equation for cot/3/ is stationary with respect to 
small variations of a trial function <pj(r) from the true a n d the dyadic 

wave function. In fact, Eq. (38) is identical to a well- 0 ( 7 / ) = - - ! ^ ^ 
known amplitude-independent variational principle for ' k{N(r)J(r'), r>r' 
the phase shift in the scalar theory13: this is to be _ . . x , /0^N . . 

^ j £ . ,i ,. , r Equations (31) and (32) may then be written as a 
expected, of course, since the radial wave function, . n , *_ ±-

, \ , r i • ^ • 1 . 1 single vector equation 
Wjjm(r), satisfies the same integral equation as the 7th 
radial function in the partial wave expansion of the , v T / 1 f00

 TT/ ,XT/ ,N / ,N , , 
scalar theory. „ M = c o t o j J ( r ) - 1 tffrOKf) • * ( • ' ) * ' 

The development of a variational principle for the /-« 
second phase shift, ay, characteristic of the vector — / fl(r,r')- <p(r')U(r')dr', (39) 
problem is carried out by a method much the same as ^ ° 
that leading to Eq. (38). However, because of the two where the amplitude A has been eliminated by using 
functions, <pj-i(r) and <£>/+i(r), which now appear, it the first of Eq. (37), i.e., 
will be convenient to introduce a single 2-component * ^ 

vector function A = - cotay / U(r')J(r') • <p(r')dr'. 
k Jo 

(p(r)z=( ] ; Scalar multiplication of p(r) by fdrU(r)<p{r) then 
\ ^ j L . l ( f ) / 

cota 

leads to the equation 

a00 /.CO /.CO \ . r - /.CO —12 

U(r)Z<p(r)ydr+j drl dr'U(r)<p(r).q(r/).<p(rOU(r')Wn U(r)J(r)-<p(r)dr j , (40) 
where [?>(**)]2= ?>• p = (<py_i)2+(<py+i)2. The formal similarity of Eq. (40) with the variational principle for cot/?/ 
is immediately evident. This expression for cotay does, indeed, have the stationary property for arbitrary choice of 
the trial function <p(r), which may be shown as follows: 

Letting the denominator in Eq. (40) be D2, we have 

5j -cotay 1 = £~2 | 2 / U<r8<pdr+ / / J75^(r)-fl- <p(rf)U(r')drdr' 

+ U<p(r)-d<p(rf)Udrdr' - ^ - ^ 2 Z ) - 1 / UJ'5<pdr, 

where the arguments of functions are suppressed if there can be no confusion resulting therefrom. Replacing <p(r) 
in the first integral by Eq. (39) leads to 

$|~- cotay | = £>-2{ - j \U{r)b<p{r) • g(r,r') • <p{rf)U{r')drdrf + J jU(r)<p(r) '§{r/)'b<p{r')U{r')drdr' . 

The first integral may be rewritten as 

/ I U(r)dv(r)>q(rS)'v(rOU(r')drdr'= / U(r')d<p(r')-q(r',r)-<p(r)U(r)dr'dr 

•If 
•II 

U(r')dv(r')'QT(r,r')-9(r)U(r)dr'dr 

U(r')tp(ryt(ryr')'bq>(r')U(r)dr'dr, 

3 P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), p. 1127. 
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since 
^ M i r ( f / ) ^ ( f ) ^ ( r ) - ( i ( f / ) ' ^ ( f ' ) ; 

and, therefore, 

51 
1 1 
- cotaj = 0. 

V. AXIALLY SYMMETRIC POTENTIAL 

The application of the variational methods developed 
in the previous sections are illustrated by calculating 
the electric field in the neighborhood of an axially 
symmetric scattering region, resulting from a high-
energy plane wave incident along the axis of symmetry. 
The spatial variation of the scattering potential is 
described by 

U(t) = u0k
2e-^+y2wi2e-M/L, z<0 

= 0, z>0, 

where UQ may be complex, in general. I t is assumed that 
the plane wave is incident from the — z direction and 
polarized in the y direction, and that l^L, kl^>l, and 
| U | <£k2; in addition, the observation point is assumed 
to lie in the interior of the scattering region (z<0). For 
wavelengths small relative to the scale lengths of the 
medium it might be expected that the near-field could 
be described approximately by a phase-corrected plane 
wave. I t has been shown by Altshuler,10 for the general 
scalar problem, that the simplest choice of trial func
tions in the scalar exponential variational principle 
leads to an approximate wave function, identical to 
that derived in different ways by Rytov14 and 
Obukhov,15 which contains diffraction effects and 
which reduces, for very large k, and small r, to the well-
known eikonal solution. This suggests that the dyadic 
exponential variational principle, Eq. (15), might also 
provide a reasonable approximation to the true vector 
field. Accordingly, we shall choose as trial functions in 
Y2 the unperturbed plane wave, Ik0e

ik°'r, and the free-
space Green's function, G( r , r ' ) , for A(k 0 | r) and r ( r , r ' ) , 
respectively. 

The matrix A - 1 (k01 r) is then 

be written as e-*k° , r[(I+&-2VV)/(r)]-Ik0, where 

/ ( r ) = /g( r , r0^ k o - r / t / ( r , )^r / . 

This integral has been evaluated for small r, through 
terms of order 1/k2, by Schiff,16 using the method of 
stationary phase: 

i rz 1 
/ ( r ) ^ eikQ'T / U(x,y,s)ds-\ eik«'T 

2k J-M 4tk2 

Jo 
[y'2U(x—x', y—yf, z—z')~\x>=y>^dz', 

Substituting this result into the exponent, we obtain 
for Y the expression 

Y=exp(Ma)I k o^ k o # r , 
where 

— i rz —iLU(x,y,z) 
a = — / dsU(x,y,s) = 

JLFZ J —QQ ZdRr 

and the elements of the matrix M are, through terms of 
order (kl)~2, 

(iL 1 x2+y2-2l' 
ATii=H-(-

\2kL2 

xy 

4 / k2P\ I2) 

Mu=M2i=-
k2lA 

iL/1 x2+y2-2l2 

M22=l+—( 

Mzi=-

2k\L2 /4 

-ix xL / 1 x2+y2—4l2 

/ k2l2\ I2) 

kl2 2kH2\L2 

yz—W\ 

1* } 
M*2 = -

-iy yL / 1 x2-\-y2—4:l2 

A- 1 (k 0 | r ) = 
\l 
0 
0 

0 
1 
0 

0 
0 
0 

kl2 2k2l2\L2 

Miz==M2z=MSd=0. 

I" 

-iko'T 

and the variational expression assumes the form 

Y = {expf [G(t,t')h0e
ik°-*'U(rOdtV^l 1 \^e iko»r 

(41) 

Using G ( r , r ' ) = (I+^ - 2VV)^(r,r /) , the exponent may 

In order to sum the infinite series of matrices rep
resented by the exponential exp(Mai), it is sufficient to 
diagonalize the 2X2 submatrix formed by the first 2 
rows and columns of M ; that is 

M^TMT-^ 

The orthogonal matrix T is found to be 

fXi 0 
0 x2 
X3 X4 

0] 
0 

oj 

14 S. M. Rytov, Izv. Akad. Nauk. S.S.S.R. Ser. Fiz. 2, 229 
(1936). 

15 A. M. Obukhov, Izv. Akad. Nauk. S.S.S.R. Ser. Geofiz. 
1953, 155 (1953) (translation by M. D. Friedman). 

T = 
x/p y/p 0 

-y/p x/p 0 
0 0 1 

p= (x*+y*yi*. 

16 L. I. Schiff, Phys. Rev. 103, 443 (1956). 
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The transformation T applied to Y, Y ' = T Y T _ 1 , 
results in an expression for Y' which is then easily 
summed to the value17 

p\ia 

0 

0 

pM<x o 

A3 A4 
— ( e ^ - l ) —(eX2a-l) 0 
Xi X2 

in which 

Xi=l+— " 
iL( 1 x2+y2-2l\ 1 

(>iko»r 

2k\L2 
) 1 / x*-f-y'\ 

kH2\ I2 I 

iL/1 x2+y2-2l2\ 1 
= 1 J 1 — i \ X 2 =l+ 4 / k2l2 2k\L2 I 

X 3 = P _ 1 (xMZi+yMZ2), 

\4t=p-1(xMz2—yMn). 

Transforming back to the original coordinate system 
and using E = Y-j7 yields the variationally improved 
estimate for the electric field interior to the scattering 
region: 

Ex=xyp~2{e^a-eMa), 

Ey=p-2(y2e^a+x2e^a), 

X3y X4x 
Ez=—(^i«-l)+—(eX2«-l). 

Xip X2P 

Simplifying these equations by retaining only terms 
through order k~2, leads to the final results 

xy 
Ex= ae^o.r+a 

k2l* 

E ei*o-r+«+\ _ _ 4 
L2k\L2 

riLf 1 x2-\-y2-2l% 2-2l\ 1 / y2\' 
4 / kn\ i2). 

L2(\ x2+y2-2l2\ J / l xz-\-y*—zi,\< 
XaeikQ,T+a 1 1 J aV k ° , r + £ \ 

AL2 /4 / 8k2\L2 

Ez 

—ly 

k l 2 ' 
iko«r "T1—("31 

L kl\ l2) A 
iL/1 x2+y2-2l2\ 

+ e a _ ( + \ 
2k\L2 I' J 

These equations are consistent with those obtained 
earlier18 by using a phase-modified plane wave as a 
first approximation in the right-hand side of the integral 

17 Note that if either x or y, or both, are zero, Y is directly 
summable without transformation. 

18 S. Altshuler, M. M. Moe, and P. Molmud, Space /Technology 
Laboratories, Rept. GM-TR-0165-00397, 1958 (unpublished). 

equation 

E(r) = ^ r i + J g ( r ) r 0 J ^ ( r 0 E ( r O + V ^ ^ ^ ^ r \ 

Although the potential is restricted by |£/|<C&2, the 
phase correction a is not required to be small; in fact, 
the condition on the potential implies only that 
|a|<3Cfe£, where kLy>l. If the medium is highly absorb
ing, a will have a large imaginary part, and |e ik° , r+a | 
= e~P, where ft is the total amplitude attenuation. For 
sufficiently large 0 all terms in the field components are 
exponentially damped, with the exception of one term 
in Ez; thus 

iy 

kl2 

and the internal field apparently is predominantly 
longitudinally polarized. This result is open to question, 
however, since it may be argued that a plane-wave 
trial solution in the presence of a highly absorbent 
medium is not sufficiently realistic for the variational 
method to yield an improved wave function.19 

It is interesting to compare Eq. (41) with an approx
imate solution of the scalar scattering problem. Rytov 
and Obukhov have shown that the wave function 

iKMr) 

= eik0#rexpf / 
exp[^|r— r'l+^ko- (r'—r)] 

- 4 i r | r - r ' | 
U(T ' ) * ' ) 

(42) 

provides, under certain conditions, a good approxima
tion to the exact solution of the scalar wave equation; 
the same wave function was shown by Altshuler10 to 
result directly from an exponential form of variational 
principle. Equation (41) obviously is precisely analogous 
to Eq. (42), with the scalar functions being simply 
replaced by their dyadic equivalents; this correspond
ence suggests that the dyadic function, Eq. (41), is the 
generalization of the scalar Rytov-Obukhov approxima
tion to the vector-scattering problem. Substitution of 
the approximate solution into the differential equation 
in order to determine conditions of validity of the 
approximate wave function cannot be easily carried 
out in the vector problem, in contrast to the scalar 
problem, since the presence of the dyadic in the expo
nent of the wave function increases very considerably 
the labor required for the calculation. 

Finally, we might expect, also by analogy with the 
results of the scalar variational method, that if the 
free-space Green's function G(r , r ' ) is chosen as the 
trial solution for the point-source wave function 

^The axially symmetric problem has been presented here 
mainly for the purpose of illustrating the application of the 
exponential variational principle. Further discussion of the 
physical problem, and the validity of the approximate solutions 
may be found in reference 18. 
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r ( r , r ' ) in the stationary form, Eq. (10), the resulting 
equation should represent, in the limit of large k, the 
free-wave Green's function corrected for phase change 
along straight-line trajectories connecting the points 
p and r; in addition to phase corrections, the improved 
wave function will also contain polarization corrections 
because of the dyadic expression in the exponent of 
Eq. (10). The inverse function r~ 1 ( r , r / ) , appearing in 
Eq. (10), is, of course, the matrix inverse of G ( r , r ' ) : 

/ eikR \-nr RR£ n 
G - ^ r ' W ) - I , 

where 
R = r - r ' , 

A = k*R*+ikR-l, 

3ik 3 
B=-k2 + — . 

R R2 

VI. SUMMARY 

A selection of variational principles for solutions of 
the vector wave equation—describing the scattering 
of an electromagnetic wave from an isotropic, non-
homogeneous potential—have been presented; these 
principles, of course, by no means exhaust the possible 
stationary expressions. Indeed, using the stationarity 
property of the forms presented in this paper, one may 
easily construct an infinite class of variational prin
ciples. However, detailed analysis of the stationary 
character of the variational principles is required before 
intuition and guesswork can be replaced by a positive 
criterion for the best choice of variational principle 
appropriate to any given problem. 

Although the scattering medium has been assumed to 
be isotropic, this restriction is not necessary and may 
be relaxed somewhat. I t is readily established that all 
the results are equally valid if the potential U(r) is a 
symmetric matrix, provided only that care is exercised 
in maintaining the proper order of factors. Furthermore, 
the variational principles based on the integral equation, 
for example, Eq. (22), are valid for a completely general 
nonsymmetric potential, although those based on the 
differential operator are not. 
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APPENDIX I 

In this Appendix, we wish to prove the reciprocity 
relation for the Green's function r ( r , r / ) . Although the 
scattering potential has been assumed to be isotropic, 
all the results of the text apply equally well to an 

anisotropic, but symmetric, potential. Thus, the 
symmetry relation r ( r , r ' ) = r r ( r / , r ) will be established 
for the more general case. 

If, from the equation 

V X V X r ( r , r o ) - ^ 2 r ( r , r 0 ) + U ( r ) r ( r , r o ) = - l 6 ( r - r o ) , 

pre-multiplied by r r ( r , r i ) , is subtracted the transpose 
of the equation 

V X V X r ( r , r i ) - * 2 r ( r , r i ) + U ( r ) r ( r , r i ) = - I « ( r - r i ) , 

post-multiplied by r ( r , r 0 ) , and the result integrated 
over all r space, there results 

M r r ( r , r i ) V X V X r ( r , r 0 ) + r r ( r , r i ) U ( r ) r ( r , r 0 ) 

- [ V X V X r ( r , r 1 ) ] 7 1 r ( r , r 0 ) - r r ( r , r 1 ) U r ( r ) r ( r , r 0 ) } ^ r 

= / " [ r ( r , r 0 ) 5 ( r - r i ) - r r ( r , r i ) 5 ( r - r 0 ) ] r f r . 

Using the assumption of a symmetric potential and the 
identity, Eq. (7), the left-hand side may be simplified 
and converted to a surface integral; thus, we have for 
the i, k component 

Ar ,z r ( r , r 1 )a i r y f c ( r , r 0 ) - r , / ( r , r 1 )az r y , ( r , r 0 ) 

+ a z r , / ( r , r 1 ) r y , ( r , r 0 ) - a y r , / ( r , r 1 ) r ? / c ( r , r o ) } ^ 

= r ^ ( r i , r 0 ) - r ^ r ( r 0 , r i ) . 

If the surface of integration is chosen to be a very large 
sphere, then on the surface r ( r , r 0 ) and TT(r,ri) must 
both satisfy the boundary condition that they be 
transverse; i.e., from the asymptotic forms of the 
integral equations, f-T^O, rT-f^0. Thus, TTudSi and 
TikdSi vanish asymptotically and the first and fourth 
terms of the integrand are, therefore, zero on the 
surface of integration. Again, using the asymptotic 
forms 

piJcr 

r(r,r0) A r ( - k | r 0 ) 
— 47JT 

pikr 

r r ( r , r i ) A ( - k | r i ) , k=f 
— 4wr 

and the relation dSidi=dSd/dr, the second and third 
terms of the integrand become 

[
Q gikr —i gikr 

D4,,-(-k|riM^(-k|ro) 
dr —4:TrrJ — 4:7rr 

- ^ • ( - k | n ) , V ( - k | r o ) ] 

Therefore, r(ri,ro) = r r(r0 , r i) . 
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The analogous "reciprocity" relation may be estab- large / , 
lished in the same way for a general nonsymmetric elkr' 
tensor potential, with the result F ( r , r / ) ~ — - -A(—k'| r), 

r ( V t) = rT(r r ' ) + 2 / TT(r/f r ' )U ( r " ) r ( r " t)dt" results in the following expression for Jik: 

dsA- :Aa(-V\i)dM»' 

potential U(r) . 
eikr' 

APPENDIX II -Aij(—k'| r ) d j J V 
— 4:7rr' 

We wish to prove the stationarity of the variational 
principle Yi[Eq. (14)]. To first order in the variations, f eikr' . t . 1 
we have +dl^-^Aij(-k

f\t) jdAjk
f 

5 Y 1 = 5 A ( k 0 | r ) + ^ r ( r , r O [ V , X V / X - ^ 2 + ^ ( r / ) ] r «*'' n 
J -dl i l y ( - k ' | r ) \8Alk' 

The first term of the integrand is zero, since 

i 4 « ( - k / | r ) A S , / = [ A ( - k ' | r ) - l , ] t i » / 

where A / = A(k 0 | r / ) . Use of the differential equations . . . . . ,. _ , . 
for A ' and r ( r , r ' ) , and Eq. (7), then leads to w l»ch v a m s h ? s ' a ^ m ? t 0 E q " ? } 

MCvxv) 

The quantity dSi'SAa, appearing in the last term 
of the integrand, is also zero, for 

5 Y ! = 5 A ( k 0 | r ) + / { [ V ' X V ' X r ( r ' , r ) ] r 5 A ' 
dSi'SAu^dSi'SAa^t^^dS,'- W»(k 0 | k') 

r' 
-\_{¥-Z7(r'))r(r,r')]SA'}(fr'+surface integral o r

 ikr, 

= 5A(k0| r ) - « A ( k 0 | r)+surface integral, dSi'SAu'^dS'—^k'-BF^k')^; 
r 

where the i, k element of the surface integral is b u t ^ . F ( k o | k / ) = 0 ) and if the same transversality 

property is assumed for the trial functions, then 

Jik= j dSl
f{Yu{rJr%dM^-Vij{r,r%dlbAjk

f-] ^ • « F ( k 0 | r , ) = 0. 

+ C a z r i i ( r , r , ) ] 5 ^ , - C a y r ^ ( r , r O ] ^ z ^ } . Finally, using dSi'd^d/dr* and 5Ajk(k0\r')~(eikr7rf) 
X8Fjk(k0\k

f), the second and third terms of the 
Choosing the surface of integration to be the sphere at integrand are observed to cancel. Thus, 7 ^ = 0 , as was 
infinity and using the asymptotic form of r ( r , r ' ) for to be proved. 


